Fatty Acids, Obesity, and Insulin Resistance: Time for a Reevaluation
نویسندگان
چکیده
There is a widespread acceptance in the literature that plasma nonesterified fatty acids (NEFA), also called free fatty acids (FFA), can mediate many adverse metabolic effects, most notably insulin resistance. Elevated NEFA concentrations in obesity are thought to arise from an increased adipose tissue mass. It is also argued that the process of fatty acid mobilization from adipose tissue, normally suppressed by insulin, itself becomes insulin resistant—thus, lipolysis is further increased, potentially leading to a vicious cycle. Although we have also accepted this model for many years (1,2), recently there has been a steady accumulation of data, both in the literature and from our own research, that has forced us to realize that this simple story is not always true. Here we review the background to the idea of “fatty acids as metabolic villains,” together with data from the literature and from our own studies, which tend to show another side to the fatty acids/insulin resistance story. We will first examine the relationship between systemic concentrations of NEFA and obesity/insulin resistance and then study adipose tissue in the obese state with regard to its adaptation for NEFA release.
منابع مشابه
The Association of Omentin Gene Expression in Visceral and Subcutaneous Adipose Tissues with Plasma Fatty Acids Profile and Dietary Fatty Acids
Introduction: Omentin, an adipokine, with anti-inflammatory effects reduces insulin resistance, and can hence, play an important role in prevention of cardiovascular disease and diabetes. The present study aimed to investigate the association of plasma and dietary fatty acids with gene expression of omentin in visceral and subcutaneous adipose tissues. Materials and Methods: Visceral and subcut...
متن کاملThe Effects of Simvastatin on Free Fatty Acids Profile in Fructose-fed Insulin Resistant Rats
Backgrounds: Type 2 diabetes mellitus is the most common metabolic disease and free fatty acids, as signaling molecules, can play a crucial role in the development of it. Different free fatty acids, through various cell membrane receptors, induce different effects on metabolic pathways and thereby affect insulin sensitivity. Simvastatin is a cholesterol decreasing drug prescrib...
متن کاملThe effect of aerobic exercise on epicardial adipose tissue, insulin resistance, and some liver enzymes in high-fat diet-induced obesity male wistar rat
Background and Aim: Due to the prevalence and socio-economic consequences of obesity in mortality, cardiovascular (CAD) and nonalcoholic fatty liver disease the effectiveness of aerobic exercise on epicardial adipose tissue (EAT), insulin resistance (IR) and some liver enzymes of high-fat diet-induced obesity male wistar rats was investigated. Methods: Thirty-two male Wistar rats with an averag...
متن کاملA Review of Mitochondrial-derived Fatty Acids in Epigenetic Regulation of Obesity and Type 2 Diabetes.
Type 2 diabetes, the leading metabolic disease, is characterized by insulin resistance and is associated with obesity. The onset of type 2 diabetes is largely due to environmental inputs, such as high dietary fat content and decreased levels of exercise. Insulin resistance resulting from high fat diet is associated with skeletal muscle mitochondrial dysfunction, leading to alterations in lipid ...
متن کاملFree fatty acid oxidation in insulin resistance and obesity.
The growing worldwide epidemic of obesity and diabetes portends a significant increase in cardiovascular disease. Obesity is associated with insulin resistance, and there is growing evidence that these conditions independently increase the risk of heart failure. Changes in myocardial substrate utilization develop in obesity and insulin resistance, and are characterized by increased fatty acid o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 60 شماره
صفحات -
تاریخ انتشار 2011